

www.annalsofplantsciences.com

Genotypic correlation and path analysis study in rice (*Oryza sativa* I.) Under irrigated and rainfed conditions

Saumva Awasthi*and JP Lal

Department of Genetics and Plant Breeding, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi- 221 005, India.

Received for publication: November 21, 2014; Accepted: December 15, 2014.

Abstract: While selecting a suitable plant type, correlation studies would provide reliable information on nature, extent and direction of selection, especially when the breeder needs to combine high potentials with desirable agronomic traits and grain quality characters. Path coefficient analysis on the other hand is an efficient statistically technique specially designed to quantify the interrelationship of different components and their direct and indirect effects on grain yield. This approach is more important to comprehend genetic makeup of dependent trait when the determining component characters are correlated. The experimental material for the present study comprised of 25 entries (6 parents + 9 F_1 's + 9 F_2 's + 1 check), planted in a compact family block design with three replications. HUR 3022, HUR 105 and Sarjoo 52 were planted as lines and Nagina 22, Anjali and Birsa Gora were treated as testers. The experiment was conducted in two water regimes: irrigated and rainfed conditions, respectively. All experimental materials were tested under both the conditions. Recommended agronomic practices were followed to grow a healthy crop. Observations were recorded on 20 randomly selected plants per replication for eleven characters viz., seedling height (SH), plant height (PH), stomatal behavior (SB), leaf rolling (LR), stay green (SG), panicle weight (PW), percent filled grains (PFG), spikelet per panicle (SPP), thousand grain weight (TGW), yield per plant (YPP) and proline content (PC). The mean values recorded for eleven characters in F2 generation were used for statistical analysis. The results of this research showed that indirect selections for increasing the number of SPP and decreasing SH and PH under both the conditions can be suitable to improve paddy yield of rice in breeding programs. The component traits such as, PC, SB, LR, SG, PFG, TGW and YPP singly or in combinations appear to be most important towards enhancing seed yield and also drought tolerance in transgressive segregants.

Key words: Rice, genotypic correlation coefficient, path coefficient, irrigated, rainfed water regimes.

Introduction

Cereals have played a significant role in the evolution of human civilization. Rice (Oryza sativa L.) is a member of cereals, belonging to the order *Poales* of the grass family Poaceae (Graminae), grown all over the world. Rice (Oryza sativa L.) is the staple food of more than three billion people in the world, most of them living in Asia. Irrigated rice accounts for 55% of world area and about 75% of total rice production. Rainfed lowland represents about 25% of total rice area, accounting for 17% of world rice production. Upland rice covers 13% of the world rice area and accounts for 4% of global rice production. Deepwater rice, although it has less area, meets the need of around 100 million people. In India, the total area under irrigated, rainfed lowland and upland rice is 22.0, 14.4, and 6.3 million ha, respectively (Singh, 2009).

*Corresponding Author: Saumya Awasthi,

Research Scholar, Department of Genetics and Plant Breeding, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi- 221 005, India.

Studies on the plant response to water stress are becoming increasingly important, as most of climatic change scenarios suggest an increase in aridity in many areas of the globe (Petit et al., 1999). On a global basis, drought (assumed to be soil and/ or atmospheric water deficit) in conjunction with high temperature and radiation, possess the most important environmental constraints to plant survival and to crop productivity (Boyer, 1982). As irrigation water is not adequate as per crop requirement, the possible solutions productivity improve field control development environment improve plant living environment to fit the needs of crop, this includes technologies which reduce soil and water loss, decrease soil water evaporation, increase maximize the use of soil water storage, collect non cultivate field run offs and use them as irrigation supplement. ii) Approach of

biological water saving i.e. modify plant to adapt the dry environment; this includes genetic modification of plant, physiological regulation and application complementary effort. It is stated that management practices can contribute to increase vield in moisture stress environments but major progress will be realized through genetic improvement (White et al., 1994; Singh, 1995; Yadav et al., 2003) and therefore through plant breeding and molecular breeding, it would be better to develop drought tolerant varieties than to irrigate rainfeds.

To develop a breeding programme to improve drought tolerance of a crop, it is necessary to gain an understanding on how the crop reacts to drought. This is best done under field conditions in the area, where the crop is grown, since the seasonal timing of drought stress varies from one location to another. Phenotype is the outcome of the interaction of the genotype with environment. Rice's susceptibility to water stress is more pronounced at the reproductive stage and causes the greatest reduction in grain yield when stress coincides with the processes irreversible reproductive (Matsushima, 1966; Cruz and O'Toole, 1984). The genetic architecture of grain yield can be better resolved through components rather than yield per se, as the yield is the end product of multiplication interactions between various yield components (Grafius, 1959).

While selecting a suitable plant type, correlation studies would provide reliable information on nature, extent and direction of selection, especially when the breeder needs to combine high potentials with desirable agronomic traits and grain quality characters. Path coefficient analysis on the other hand is an efficient statistically technique specially designed to quantify the interrelationship of different components and their direct and indirect effects on grain yield. This approach is more important to comprehend genetic makeup of dependent trait when the determining component characters are correlated.

A simple correlation does not provide the true associations of character with each other as these attributes are related among themselves and considerably influence each other. Hence, these correlations are partitioned into direct and indirect effects to

pin point the precise direct and indirect cause of these association. In the present investigation, phenotypic correlations of seed yield per plant with other characters were partitioned into their direct and indirect effects through path coefficient analysis.

Materials and Methods

present investigation The was conducted during three kharif seasons i.e. 2010, 2011 and 2012 at Agricultural Farm, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi. The experimental material for the present study comprised of 25 entries (6 parents + 9 F_1 's + 9 F_2 's + 1 check), planted in a compact family block design with three replications. HUR 3022, HUR 105 and Sarjoo 52 were planted as lines and Nagina 22, Anjali and Birsa Gora were treated as testers. The experiment was conducted in two water regimes: irrigated and rainfed conditions, respectively. experimental materials were tested under conditions. Recommended both the agronomic practices were followed to grow a healthy crop. While P and K were applied in full dose at the time of sowing, N was applied in three splits as top dressing. Insect and weed control management were applied periodically as required.

Observations were recorded on 20 randomly selected plants per replication for eleven characters viz., seedling height (SH), plant height (PH), stomatal behavior (SB), leaf rolling (LR), stay green (SG), panicle weight (PW), percent filled grains (PFG), spikelet per panicle (SPP), thousand grain weight (TGW), yield per plant (YPP) and proline content (PC). The mean values recorded for eleven characters generation were used for statistical analysis. The genotypic correlation coefficients were estimated and path coefficient analysis was done as per Dewey and Lu and Singh and Chaudhary.

Results and Discussion typic correlation under irrigated and

Genotypic correlation under irrigated and rainfed conditions

At genotypic level, seedling height exhibited positive significant correlation with PH, PC and SB in the season kharif, 2011, kharif 2012 (irrigated) and kharif, 2012 (rainfed). While its association with SPP and YPP was found to be negative and significant in irrigated condition for both kharif, 2011 and 2012 season. Seedling height also

exhibited negative significant correlation with SG in kharif, 2012 (rainfed) whereas positive significant correlation in kharif, (irrigated). PH reported positive significant correlation with PC and SB in kharif, 2011 and positive significant correlation with PC, SB and SG was reported in the season kharif, 2012 (irrigated and rainfed). whereas it exhibited negative significant correlation in LR association of PFG with TGW and YPP was found to be positive and significant in kharif, 2011, 2012 (irrigated) and 2012 (rainfed). Whereas it exhibited negative significant correlation with SG in kharif 2011, 2012 (irrigated) and 2012 (rainfed). LR and TGW at phenotypic level in kharif, 2011 and 2012 (irrigated) and negative significant correlation in PW, LR and TGW in kharif 2012 (rainfed). PC exhibited positive significant correlation with SB and SG in both kharif, 2011 and 2012(irrigated) seasons. Whereas it exhibited positive significant correlation with SG in the season, kharif 2012 (rainfed). While its association with PW, PFG, LR, TGW and YPP was found to be negative but significant in kharif, 2011. In kharif, 2012 (irrigated), PC exhibited negative significant correlation with PW, SPP, LR, TGW and YPP whereas in kharif, 2012 (rainfed), it showed negative significant correlation with PW, PFG, SPP, LR, TGW and YPP. SB exhibited positive significant correlation with PW, SPP, PFG, TGW and YPP in kharif, 2011 and 2012 (irrigated) and 2012 (rainfed). Whereas it exhibited negative significant correlation with LR and SG in kharif 2011 and 2012 (rainfed) and LR in kharif, 2012 (irrigated). PW exhibited positive significant correlation with SPP, PFG, LR, TGW and YPP in kharif, 2011, 2012 (irrigated) and 2012 (rainfed) whereas it exhibited negative significant correlation with SG in kharif 2011, 2012 (irrigated) and 2012 (rainfed). Association of SPP with PFG, LR, TGW and YPP was found to be positive and significant in kharif, 2011, 2012 (irrigated). Whereas it reported positive significant correlation with PFG, TGW and YPP in kharif, 2012 (rainfed). SPP exhibited negative significant correlation with SG in kharif 2011, 2012 (irrigated) and 2012 (rainfed) season. LR reported positive significant correlation with YPP kharif in 2012 (irrigated) and 2012 (rainfed) whereas it exhibited negative significant correlation with SG in kharif 2011, 2012 (irrigated) and 2012 (rainfed). SG exhibited negative significant correlation with YPP in kharif 2011, 2012 (irrigated) and 2012 (rainfed). SG was negative significant reported to have

correlation with TGW and YPP in kharif 2011 and kharif, 2012 (rainfed). Whereas it exhibited negative significant correlation with YPP in kharif, 2012 (irrigated). TGW reported positive significant correlation with YPP in kharif, 2011, 2012 (irrigated) and 2012 (rainfed).

Genotypic path coefficient analysis under irrigated and rainfed conditions

exhibited substantial negative direct effect on YPP. It showed positive indirect effect on YPP via PW, SPP, PFG and LR. SH contributed considerable negative indirect effect on YPP via PH, PC, SB, SG and TGW, in kharif, 2011 and 2012 (irrigated). SH was reported to exhibit positive indirect effect on YPP via PW, SPP and LR and negative indirect effect on YPP via PH, PC, SB, PFG, SG and TGW, in kharif, 2012 (rainfed). It was revealed that plant height exhibited positive direct effect on YPP in kharif, 2011 and 2012 (rainfed) and negative direct effect on YPP in kharif, 2012 (irrigated). Plant height made substantial positive indirect contribution on YPP via SH, PC, SB, PFG, SG and TGW in kharif, 2011 and 2012 (rainfed). Negative indirect effect on YPP was contributed by PH via PW, SPP and LR in kharif, 2011 and 2012 (rainfed). PH exhibited positive indirect effect on YPP via PW, SPP, PFG, LR and TGW in kharif, 2012 (irrigated) and negative indirect effect on YPP was contributed via SH, PC, SB and SG in kharif, 2012 (irrigated). PC exerted negative direct effect on YPP in kharif, 2011 and 2012 (rainfed) and positive direct effect on YPP in kharif, 2012 (irrigated). PC exhibited positive indirect effect on YPP via PW, SPP, PFG and LR in kharif, 2011 and 2012 (rainfed) whereas negative indirect effect on PC was exhibited by SH, PH, SB, SG and TGW in kharif, 2012 (irrigated). SH, PH, SB and SG were reported to exert positive indirect effect on PC in kharif, 2012 (irrigated) whereas negative indirect effect on YPP was exhibited via PW, SPP, PFG, LR and TGW in kharif, 2012 (irrigated). It was revealed that SB exhibited negative direct effect on YPP in kharif, 2011 and 2012 (irrigated) and positive direct effect on YPP in kharif, 2012 (rainfed). SB showed positive indirect effect on YPP via LR and SG in kharif, 2011 and 2012 (irrigated). It also exhibited negative indirect effect on YPP via SH, PH, PC, PW, SPP, PFG and TGW in kharif 2012 (irrigated). SB showed positive indirect effect on YPP via SH, PH, PC, PW, SPP and PFG in kharif, 2012 (rainfed), whereas it exhibited negative

indirect effect on YPP via LR, SG and TGW in kharif, 2012 (rainfed). PW exhibited high positive direct effect on YPP in kharif, 2011 and 2012 (irrigated) while negative direct effect on YPP was reported in kharif, 2012 (rainfed). PW showed positive indirect effect on YPP via SB, SPP, PFG, LR and TGW in kharif, 2011 and 2012 (irrigated). PW was reported to have negative indirect effect on YPP via SH, PH, PC and SG in kharif, 2011 and 2012 (irrigated). PW showed positive indirect effect on YPP via SH, PH, PC, SG and TGW in kharif, 2012 (rainfed) whereas it exhibited negative indirect effect on YPP via SB, SPP, PFG and LR in kharif, 2012 (rainfed). SPP exhibited negative direct effect on YPP in kharif, 2011 and high positive direct effect on YPP in kharif, 2012 (irrigated) and 2012 (rainfed). SPP also showed positive indirect effect via SB, PW, PFG and LR in kharif, 2011, 2012 (irrigated) and 2012 (rainfed) whereas it exhibited negative indirect effect on YPP via SH, PH, PC, SG and TGW in kharif, 2011, 2012 (irrigated) and 2012 (rainfed). PFG was reported to excise high positive direct effect on YPP in kharif, 2011, 2012 (irrigated) and 2012 (rainfed). PFG exhibited to have positive indirect effect via PH, SB, PW and SPP in kharif, 2011. Positive indirect effect via SB, PW, SPP and TGW for YPP was exhibited in kharif, 2012 (irrigated) whereas SH, PH, SB, PW and SPP also showed positive indirect effect in kharif, 2012 (rainfed). PFG exerted negative indirect effect on YPP via SH, PC, LR, SG and TGW in kharif, 2011. It also reported negative indirect effect on YPP via SH, PH, PC, LR and SG in kharif, 2012 (irrigated) whereas in kharif, 2012 (rainfed), PFG showed negative indirect effect on YPP via PC, LR, SG and TGW. LR exerted negative direct effect on YPP in kharif, 2011 and 2012 (irrigated) and positive direct effect in kharif, 2012 (rainfed). LR was reported to exert positive indirect effect on YPP via SH, PH, PC, SB, PFG and SG in kharif, 2011 and 2012 (irrigated) whereas in kharif 2012 (rainfed) positive indirect effect was excised via PW and SPP. LR exhibited negative indirect effect on YPP via PW, SPP and TGW in kharif, 2011 and 2012 (irrigated). Whereas it showed negative indirect effect on YPP via SH, PH, PC, SB, PFB, SG and TGW in kharif, 2012 (rainfed). SG exerted positive direct effect on YPP in kharif, 2011 and 2012 (irrigated) and negative direct effect on YPP in kharif, 2012 (rainfed). SG excised positive indirect effect on YPP via SH, PH and praline content in kharif, 2011 and 2012 (irrigated) whereas in kharif 2012 (rainfed), SG exerted

positive indirect effect via SB, PW, SPP, PFG and LR. it was reported that SG showed negative indirect effect on YPP via SB, PW, SPP, PFG, LR and TGW in kharif, 2011 and 2012 (irrigated). SG exhibited negative indirect effect on YPP via SH, PH, PC and TGW in kharif, 2012 (rainfed). TGW exhibited positive direct effect on YPP in kharif, 2011, 2012 (irrigated) and 2011 (rainfed). TGW exhibited positive indirect effect on YPP via SH, SB, PW and PFG in kharif, 2011 and 2012 (irrigated) whereas in 2012 (rainfed), TGW showed positive indirect effect on YPP via PW and SPP. TGW exerted negative indirect effect on YPP via PH, PC, SPP, LR and SG in kharif, 2011 and 2012 (irrigated). Whereas in kharif, 2012 (rainfed), TGW showed negative indirect effect on YPP via SH, PH, PC, SB, PFG, LR and SG.

Conclusion

The results of this research showed that indirect selections for increasing the number of SPP and decreasing SH and PH under both the conditions can be suitable to improve paddy yield of rice in breeding programs. The component traits such as, PC, SB, LR, SG, PFG, TGW and YPP singly or in combinations appear to be most important towards enhancing seed yield and also drought tolerance in transgressive segregants.

References

- 1. Boyer JS.1982. Plant productivity and environment. *Science*. 218: 443.
- 2. Cruz RT and O'Toole JC. 1984. Dry land rice response to an irrigation gradient at flowering stage. *Agron J.* 76: 178 183.
- 3. Dewey DR and Lu KH. 1959. A correlation and path analysis of components of crested wheat grass seed production. *Agron. J.* 57: 515 518.
- 4. Dey MM and Upadhyaya HK. 1996. Yield loss due to drought, cold and submergence tolerance. In: Evenson RE, Herdt RW and Hossain M (Eds.), Rice Research in Asia: Progress and Priorities. International Rice Research Institute in Collaboration with CAB International, UK.
- 5. Grafius JG. 1959. Genetic and environmental relationship of components of yield, maturity and plant height in F2 -

- F3 soybean populations. *Iowa State Coll. J. Sci.*, 30: 373 374.
- 6. Kavitha S and Reddi SRN. 2001. Correlation and path analysis of yield components in Rice. *The Andhra Agril J.* 48 (3-4): 311 314.
- 7. Kumar Y, Singh BN, Verma OP, Tripathi S and Dwivedi DK. 2011. Correlation and Path coefficient Analysis in Scented Rice (Oryza sativa L.) under Sodicity. *Environ.* & *Ecol.* 29 (3B): 1550 1556.
- 8. Petit JR, Jouzel J and Raynaud D. 1999. Climate and atmospheric history of the past 420 000 years from the Vostok ice core, Antarctica. *Nature*. 399: 429–436.
- 9. Matsushima S. 1966. Theory of Yield Determination and Its Application. Fuji Publishing, Tokyo. *Crop Sci.* in Rice. 365.
- 10. Singh MP. 2009. Rice productivity in India under variable climates, www. Niaes,

- affrc, go.jp/marco2009/English/,,,/W2-02_singh_pdt.
- 11. Singh RK and BD Chaudhary. 1985. Biometrical methods in quantitative genetic analysis. Kalyani Publishers, N. Delhi, India
- 12. Wang FZ, Wang QB, Kwon SY, Kwak SS. and Su WA. 2005. Enhanced drought tolerance of transgenic rice plants expressing a pea manganese superoxide dismutase, *J. Plant Physiol.* 162: 465 472.
- 13. Yogameenakshi P, Nadarajan N and Anbumalarmathi J. 2004. Correlation and path analysis on yield and drought tolerant attributes in rice (*Oryza sativa* L.) under drought stress. *Oryza*. 41 (3&4): 68-70.
- 14. Zhu JK. 2002. Salt and drought stress signal transduction in plants, *Annu. Rev. Plant Biol.* 53: 247–273.

Source of support: Nil
Conflict of interest: None Declared